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ABSTRACT 

It is well known that the resonator geometry strongly influences the resonant frequencies 

of an acoustical resonator and the generated nonlinear standing pressure waveform. Maximizing 

the ratio of maximum to minimum gas pressure at an end of an oscillating resonator by 

optimizing the cavity contour is investigated numerically. A quasi-Newton type scheme is used 

to find optimized axisymmetric resonator shapes to achieve the maximum pressure compression 

ratio. The acoustical field is solved using a one-dimensional model, and the resonance frequency 

shift and hysteresis effects are obtained through an automation scheme based on continuation 

methods. Results are presented from optimizing cone, horn-cone, and cosine resonator 

geometries. Significant performance improvement is found in the optimized shapes over others 

previously published. Different optimized shapes are found when starting with different initial 

guesses, indicating multiple local extrema. The numerical model is validated by comparing with 

the experimental results of a horn-cone shaped resonator. 

PACS numbers: 43.25.Gf, 43.25.Cb 
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I. INTRODUCTION 

The waveform of the standing wave in an oscillating closed cavity is strongly influenced 

by the geometry of the resonator cavity. It is well known that shocks form in a cylindrical tube 

when the interior gas is oscillating at its resonant frequency. Lawrenson et al.' at Macrosonix 

Corp first exploited the shape dependence and obtained high-amplitude and shock-free acoustic 

pressures in axisymmetric tubes of varying cross sections, referred to as resonant macrosonic 

synthesis (RMS). Peak acoustic pressures that measure three to four times ambient pressure and 

maximum to minimum pressure ratios of 27 were observed in shaped cavities. The size of the 

demonstrated overpressure reached the level that is required by commercial applications such as 

acoustic pumps or compressors. The rescarchers considered these types of axisymmetric shapes: 

cylinder, cone, hone-cone, and bulb. They concluded that the hone-cone resonator shape 

generated the highest overpressure for a given input power. They also demonstrated that the 

overall characteristics of the waveform does not change when a resonator is filled with different 

gases. 

A companion paper by Ilinskii et a1.' developed a one-dimensional frequency-domain 

model for studying the RMS numerically. The results confirmed the nonlinear standing 

waveform and the related characteristics such as shape-induced resonance hardening and 

softening observed in the experiments by Lawrenson et a/.' To account for the energy losses in 

the boundary layer along cavity wall, Ilinskii et aL3 later modified the one-dimensional model by 

introducing an additional term in the continuity equation and used a turbulence model. Hamilton 

et aL4 analytically investigated the relationship between the natural frequency of a nonlinear 
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acoustic resonator and its shape as well as the nonlinear interactions of modes in the resonator. 

Chun and Kim’ numerically investigated cosine shaped resonators in addition to cylindrical and 

conical shapes using high-order finite-difference approximations. They concluded that the half 

cosine-shape is more suitable to induce high compression ratio than other shapes under certain 

assumptions. Recently, Erickson and Zinn6 used the Galerkin method to solve the one- 

dimensional model and found a non-monotonic increase in compression ratio when the flare 

constant is raised for a class of horn-shaped resonators. To serve commercial needs, such as in 

acoustic gas compressor and acoustic liquid pump, the objective is to find an optimized shape for 

generating higher overpressure. However, the optimization procedure and results have not yet 

been discussed. 

In this article, the numerical schemes are introduced and the results are presented for 

optimizing the shape parameters that yield the highest maximum-to-minimum pressure ratio in 

each of the following resonator shapes: cone, horn-cone, and cosine-shape. In Sec. 11, the 

modeling equations are presented; in Sec. 111, the numerical schemes are described; in Sec. IV, 

the numerical model and experiment results are compared and the resulting optimized shapes are 

discussed. 

11. GOVERNING EQUATIONS 

In this section, the one-dimensional model for computing the acoustic wave field in an 

axisymmetric resonator is briefly described. The equations are presented for completeness and 

the details of the derivation are given in the work by Ilinksii et aL2. 
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Consider the acoustic field in an oscillating resonator of length I driven by an external 

force. The resonator is axisymmetric with the inner radius given by r=r(x), O<x<l, where x is 

the coordinate along the axis of symmetry. 

The density of the gas p, the velocity u, and the pressurep satisfy the conservation of mass 

-+ - - ( r  aP 1 8  2 p u ) = o ,  
at r2  ax 

and the conservation of momentum 

\ 

(2) 
au c3.4 1 ap (6+4qi3 j  a ' I  a 
-+u-  = ----u(t)+ - [ y - ( r 2 U ) J 7  
at ax p ax p ax r ax 

where u(t) is the acceleration of the resonator enforced by the external force; 6 and q are 

coefficients of viscosity. q is the shear viscosity, and 6 is the bulk viscosity that results from 

nonequilibrium deviations between the actual local pressure and the thermodynamic pressure. 

The state equation is specified by that of an ideal gas 

where po is the ambient pressure, po is the density, and y is the ratio of specific heats of the gas. 

The no-penetration boundary conditions at the two ends require that the velocity vanish at 

x=Oand 1 .  

The quasi-one-dimensional compressible Navier-Stokes equations (1)-(3) can be solved 

using different numerical methods. Instead of finite difference method or finite element method, 

the frequency-domain method is employed, where the unknown variables are expressed in terms 

of finite Fourier series in time and the Fourier coefficients are solved for. Both the experimental 
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and numerical results show that the time harmonics of the dependent variables, such as the 

pressure p , decay rapidly as the frequency increases. This ensures that the number of time 

harmonics, N , needed for accurate results is small. In our numerical simulations, we have set 

the value of N to be ten and found that increasing N does not change our results. 

Following Ilinksii et aL2 by expressing the variables in Fourier series, the Eqs. (1) and (2) 

can be reduced to a system of Ordinary Differential Equations (ODES) for the Fourier 

coefficients of the velocity potential (p, defined as u = V p  : 

N 
aP where v = r2 -, and ek, Qk and li, are the Fourier coefficients defined as p = 
dX k=-N 

N N 

v = Ckeik', a = c likeik' . The detailed expressions for Dkl = Dkl(Ck , Gk , x) and 
k=-N k = - N  

f k  = f k  (Ck Gk, x) are given by 

Dk, = (ci +ikS)G,, + Di-,, 

dr ' 

where 6 =  c + 4 7 / 3  is the viscosity, co = is the reference speed of sound, D: is given 
PO 

N Y+l 2 by DL = -(y - l )xl i ,  -im(y -l)@, - ~ [ v  I,, and [v2Ik = x C k - l C l .  The no-slip boundary 
2r I = - N + k  
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conditions at the two ends are translated to the equivalent conditions in Fourier space: i), = 0 

atx=0,1.  

After the Fourier coefficients { @k 1 and { Ck 1 are obtained by solving the boundary-value 

problem Eq.(4), the velocity potential cp and the modified velocity v are computed from the 

inverse FFT. The density p is given by the momentum equation 

and the pressure p can be obtained from the state equation (3). 

111. NUMERICAL METHODS 

In this section, the procedures for finding the optimal shape parameters are described so 

that the desired pressure waveform can be obtained. The overall steps are as follows: first, given 

a resonator shape and a fixed value of input power, the resonant frequency of the resonator is 

searched and the compression ratio, defined as the maximum-to-minimum pressure ratio at the 

narrow end, is computed; second, the optimization step is performed, which yields the next 

candidate for the optimal resonator shape; then, the first and the second steps are repeated until 

an optimal design is reached. 

To simplify the discussion, the following dimensionless variables are introduced, 
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where w is the frequency of the periodic force acted on the resonator, wo = nco / I  is the 

hndamental frequency of a cylindrical resonator of length I 

In this work, the dcceleration of the resonator induced by external force is assumed to be 

harmonic, A ( T )  = Acos(T) .  The physical parameters that determine the acoustic wave field in the 

resonator are: the acceleration amplitude 2 ,  the ratio of specific heats y, the attenuation 

coefficient G = Ir(c + 45'i3)w~ , and the resonator oscillating frequencyn = E, 
dP0 w0 

A. Shape optimization 

Suppose the resonator shape R(X) is determined by a number of shape parameters, 

So,S,, ..., S,, , For example, a cone is given by R ( X )  = So + S,X . The goal is to find the best shape 

producing the highest value of the pressure compression ratio R, , which is defined as the ratio of 

maximum pressure to the minimum pressure at the narrow end of the resonator, i.e., 

The compression ratio Rc is a hnction of the shape parameters, the dimensionless frequency S2 , 

and the history of R (due to the existence of hysteresis effects). The method for obtaining Rc for 

a fixed resonator shape is explained later in the section. 
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Now, the method for finding the optimal resonator shape is presented. First, the practical 

conditions and constraints in the optimization are specified. The original experiments by 

Lawrenson et al. and some commercial applications use refrigerant R- 134a as the gas inside 

resonators. We set the specific heat ratio y = 1.2 in order to match the gas properties of the 

refrigerant. The viscosity-related parameter G is fixed at 0.01, and will be shown later to be the 

value that makes the results from our numerical model match with those from the physical 

experiments. This same value of G was found appropriate in the study of Illinski2. For the 

current optimization, the dimensionless radius of the resonator at the narrow end, R(X  = 0) , is 

restricted to be greater than 0.020833 so that real resonators could be built using these optimized 

dimensions. 

The objective of the optimization is to maximize the compression ratio that would be 

observed in a real oscillating acoustic resonator. The electrodynamic shaker system used in this 

study and otherslP6 has limited acceleration capacity that is reduced by adding weight to the 

resonator. If we used the constraint to be constant acceleration amplitude, the optimization 

scheme would predict an optimum conical resonator shape that has a very small narrow end and 

very large wide end7, resulting in heavy weight experimental hardware. However, in an 

experimental setup, this resonator would not produce high compression ratios due to the low 

acceleration generated by the shaker. A greater compression ratio would be obtained from 

lighter weight hardware oscillated at higher acceleration amplitude. Therefore, the amount of 

input power that is delivered to the resonator oscillation is fixed during the optimization, 

effectively favoring lighter weight resonators and more closely modeling the real system. 
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For a fixed amount of input power W, , the acceleration amplitude 2 from the mass of 

the resonator is deduced through the formula in dimensional variables 

(8) 
1 (w,) = ( P , w - ~ 2  9 

7r 

where M is the dimensionless mass of the resonator. Assuming the width and the density of the 

resonator wall are constant, the mass of the resonator A4 is proportional to the total surface area 

of the resonator. Equation (8) can be derived by assuming that most of the power consumed, 

<WI>, is due to the inertial force F required to oscillate the resonator at the frequency w . In 

dimensional variables, 

where Tp is one period of the oscillation. Equation (8) follows as the dimensionless velocity of 

the resonator is given by 2 cos T and the power is nondimensionalized by pool  

Second, a quasi-Newton method, BFGS (Broyden-Fletcher-Goldfarb-Shanno’), is used 

for maximizing the multi-variable nonlinear function R,(So, S,,,,,,S,> . Since the evaluation of the 

objective function R, itself involves solving a nonlinear system of ODES, Eq. (4), many times, 

the gradient information of R, required for the BFGS method is not available analytically and is 

derived by partial derivatives using a numerical differentiation method via finite differences. 

This entails perturbing each design variables, Si, in turn and calculating the rate of change in the 

objective function Rc(So,S,,,,,,Sn). For two shape parameters, the optimization takes 4 to 48 hours 
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of CPU time (depending on the type of the resonator shape and initial guess for the shape 

parameters) on a 1.3GHz Athlon T-Bird PC with the Lahey-Fujitsu FORTRAN compiler. 

B. Boundary value problem 

For a given shape of the resonator, the boundary value problem Eq. (4) is solved 

numerically by a Multiple Shooting Method. Since the amplitude of the pressure in a resonator 

strongly depends on the oscillating frequency R , the quantity to be optimized is the maximum 

pressure compression ratio R, over the entire range of R for a given resonator shape. Because 

of the hysteresis effects, the solution is not unique near the resonant frequency and the Multiple 

Shooting Method will not converge unless a good initial guess of the solution is provided. To 

circumvent the difficulty, a continuation method is implemented: the system of ODEs is solved 

starting from a frequency R that is far away from the resonant frequency and the solution is used 

as an initial guess for solving the ODEs for increased or decreased ST; the steps are repeated until 

all branches of the solution for all values of ST near the resonance is completed. The maximum 

ratio R, among different values of R is chosen as the compression ratio for the resonator. 

IV. RESULTS 

A. Characteristics of the standing waves 

Before presenting the results of the optimal resonator's shapes, some of the important 

properties of the pressure wave in a non-cylindrical resonator are illustrated. 

The horn-cone resonator shape is described by: 
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So cosh(S, X ) ,  for 0 I X I S, 
for S2 5 X I 1 

R ( X )  = 

where so = 0 . 0 2 8 3 3 3 , ~ ~  =5.7264,s, = 0.25,a = s,cosh(S,S,), andp  = S,S, sinh(S,S,). The shape 

parameters for the horncone are obtained from those used in the experiments by Lawrenson et 

al. ’ 
In Fig. 1, the pressure waveforms at the ends of a cylindrical resonator and the horncone 

resonator are shown at their corresponding resonance frequencies for the effective viscosity 

G-0.01, the gas specific heal ratio ~ ~ 1 . 2 ,  and the acceicration 1 = 1 x lW3. Throughoui this 

paper, the effective viscosity G and the gas specific heat ratio are held constant. At the same 

acceleration magnitude, the waveform at the narrow end of the horncone shows large variation in 

which the ratio of the maximum and minimum pressure, R, , exceeds the value of 30.5. On the 

other hand, the waveform for the cylinder shows the formation of shocks at resonance and the 

compression ratio R, is below 1.32. The difference in the waveforms shows the strong 

dependence of the acoustic field on the geometry of a resonator. The graph also shows that the 

variation in pressure at the wide end of the horncone is much milder than that of the narrow end, 

oscillating within 23% above or below the value of the reference pressure p o  . 

The ratio of the amplitudes of the second and the first harmonics of the pressure, p 2  / p ,  , 

is plotted in Fig. 2 against the reduced amplitude of the first harmonic, p ,  / p o  , measured at one 

end of the cylinder and at the narrow end of the horncone. The figure shows that the second 

harmonic reaches its maximum at small amplitude of the first harmonic for the consonant 

(cylinder) resonator; however the second harmonic pressure increases more slowly than the first 
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harmonic for the dissonant (horncone) resonator. This indicates that the energy is contained in 

the first harmonic in the horncone resonator, thereby creating a large-amplitude pressure wave in 

the dissonant resonator. In contrast, the energy is efficiently transferred in a cylindrical resonator 

from lower to higher harmonics of pressure at relatively low total pressure amplitudes, thereby 

preventing the formation of large-amplitude pressure waves. 

The amplitude of the first harmonic corresponding to the pressure in the horncone 

resonator is plotted against the frequency of the oscillating resonator in Fig. 3 for two different 

levels of acceleration, 2 = 2 x lo4 and 2 = 1 x 1 O - 3 .  For the smaller acceleration, the pressure is 

uniquely determined at each frequency; for the larger drive amplitude, the pressure takes one of 

the multiple values near the resonance, depending on the direction of the change in frequency. 

The existence of hysteresis and hardening resonance in horncone resonators requires that the 

largest pressure compression ratio be obtained through an upward frequency sweep. The 

numerical simulations show that the frequency increment size near the resonance must be small 

for the convergence of the Multiple Shooting method. 

B. Comparison with experiments 

While the numerical model by itself provides insight into the physics of the nonlinear 

acoustic standing waves in oscillating resonators, experimental verification is required to ensure 

that the model behaves as expected. Experimental data is used to generate the inputs to the 

numerical model. The result of the numerical simulation is then compared to the data gathered 

from the experiment. 
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The acceleration input to the numerical model is generated using measured signals from 

the experimental data. Recall that the model assumes that the resonator is excited using a simple 

sinusoidal acceleration. In addition, the resonator is assumed to be ideally rigid so that the 

acceleration is constant across the length of the resonator body. The arguments made in 

Finkbeiner et 

the fundamental acceleration harmonic as the driving function for the model. 

allow the measured acceleration signals to be input to the model by isolating 

The effective viscosity parameter G was originally unknown. The value for G is based in 

part upon the second coefficient of viscosity, due to the high-pressure gradients and frequencies 

present in the acoustics. Previous work2 assumed a value of G = 0.01, although no justification 

was given for this value. To estimate this parameter, the pressure from the model computed for 

several different values of G, and the results for the varying values of G are then plotted together 

with the experimental data to determine the best match.” 

In this study, a single comparison between experimental and numerical data is presented 

as an example of the procedure used. The experimental configuration is shown in Fig. 4. A horn- 

cone resonator is rigidly mounted wide-end down on a Labworks ET-127 shaker system. The 

shape of this resonator is given by Eq. (1 0) with the shape parameters So = 0.028333, 

S, = 5.7264, and& = 0.25. 

PCB Piezotronics 353B03 accelerometers are mounted at both ends of the resonator. 

PCB Piezotronics dynamic pressure transducers are mounted in the sidewall of the resonator at 

axial positions of X = 0.05 and X = 0.95. Druck PDCR 130 static pressure transducers and 

thermocouples are mounted at the same axial positions as the dynamic pressure transducers (see 

Fig. 4). The dynamic transducers are optimized for high frequency pressure measurements and 
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are incapable of measuring static pressures due an exponential decay in voltage. The static 

transducers are used to measure this static value and complete the pressure measurement. 

Several acceleration levels are used to excite the resonator; for the purposes of this study, 

an acceleration amplitude of roughly 50 g measured at the narrow end of the resonator is 

presented. At the acoustic resonance of the working fluid, the acceleration signals measured 

near the two ends have small difference in amplitude as graphed in Fig. 5.  The dimensionless 

acceleration based on the signal measured at the wide and the narrow ends of the resonator is 

given by 2 = 9.76 x lo-’ and 2 = 1.03 x 1 O4 respectively. The difference in the amplitude at the 

two ends is due to elasticity of the resonator. The dynamic pressure frequency response 

measured at the narrow end of the horn-cone resonator is displayed in Fig. 6 along with the 

curves which are computed for varying values of G with a dimensionless acceleration level, 

2 = 1.03 x 1 0-4 , matching the acceleration measured at the resonator narrow end. The 

computational pressure amplitude is measured at the axial location of X = 0.05. The result 

shows that the model over-predicts the resonant frequency of the horn-cone resonator by roughly 

2.6%. However, in terms of amplitude and wave form, the model predicts the pressures 

generated in the resonator very well. The matching value of G is between 0.01 1 and 0.012 with 

acceleration referenced at the narrow end. Similar comparison shows, when the computed 

pressure frequency response curves are calculated based on the dimensionless acceleration at the 

narrow end, 2 = 9 . 7 6 ~  lo-’, the matching value of G is found to lie in (0.010, 0.01 1). These 

values of G are, for all intents and purposes, close to those assumed in previous studies2. 
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C. Optimal conical shapes 

In following subsections, the results are shown from optimizing each type of resonator 

shapes to achieve maximum compression ratio R, at one end of the resonators. Again, in the 

optimization process the ratio of specific heats is held at y=l.2, the attenuation coefficient 

G=0.01. The acceleration 2 for a given shape is calculated from Eq. (8), where the value of the 

fixed input power is deduced from that for a reference conical resonator accelerated at the 

amplitude = 5 x The conical resonator contour can be written as 

R(X)=S ,  +SIX, for 0 5 X I 1  (11) 

The conical resonator studied in Lawrenson et 01.' and Ilinksii et 

S1=0.26800 is chosen to be the reference resonator. For the reference resonator, the compression 

ratio reaches its maximum value of R, = 5.0475 when the oscillation frequency is raised to 

R =1.3134. 

with &=0.032941 and 

Using the optimization procedure described in Sec. I11 and starting with the reference 

conical shape, the optimal conical resonator is found to have the shape parameters 

So = 0.020833 and SI = 0.15438. The compression ratio R, of the conical resonator reaches a 

value of 6.72 13, which is about 33% higher than that of the reference resonator. Recall that, due 

to hysteresis, in order to find R ,  the entire branch must be traced by incrementing the frequency 

R. The compression ratio reaches the value when the frequency is increased to 1.3 123. The 

corresponding acceleration that achieves such a compression ratio has the amplitude 

2 = 6.6859 x According our assumption (8), accelerating the optimal resonator at this 
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acceleration and frequency consumes the same amount of input power that oscillates the 

reference conical resonator at ,? = 5 x 1 O4 and its resonance frequency R = 1.3 134 . As stated 

before, to find realistic dimensions of the resonator, the optimization scheme limits the lower 

bound for the dimensionless radius of the resonator at the narrow end to be R(X  = 0) = 

0.020833. From the dimensions of the optimal conical resonator, the smaller narrow end, So , 

generates a larger compression ratio. Due to the fixed input-power constraint, the slope of the 

optimal cone SI is finite. The reference resonator and the optimal conical resonator are shown in 

Fig. 7'. The second ccne (Fig. 7(b)) has the smaller narrow end acd smaller slope than the first 

(Fig. 7(a)). 

D. Optimal horn-cone shapes 

The horn-cone geometry used in this study is described by Eq. (10). The three shape 

parameters So,  SI and S, are optimized. The first optimization attempt starts with the 

dimensions of the horn-cone given in Lawrenson et al. ', So = 0.028333, SI = 5.7264 and 

S, = 0.25 . Using the original shape parameters, the compression ratio R, = 13.564 is achieved 

when the horn-cone resonator is accelerated at 2 = 5.06 13 x 1 0-4 and the frequency is increased 

to R = 1.4674 . In searching for the optimal horncone design, the lower bound of the radius of 

the narrow end So is limited to be 0.020833 and the upper bound of SI to be 6 for practical 

reasons. The separation point between the horn section and the cone section, S, , could be any 

value between 0 and 1. The result of optimization finds that the compression ratio reaches a 
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maximum value of 21.547, 58% higher than that of the horncone of Lawrenson et al. I ,  when 

So = 0.20833, S, = 5.7263 and S, = 0.24893. This optimal horncone achieves the value of the 

compression ratio when its acceleration has the amplitude 2 = 5.9782 x 

at its resonance frequency R = 1.4696 . These values of the acceleration and the frequency 

satisfy the requirement of fixed input power formulated in Eq. (8). 

and it is oscillating 

The optimization scheme BFGS is designed for finding a local extreme of a multivariable 

function. Our numerical simulations indicate that the compression ratio, as a function of the 

shape parameters, usually has niany local cxtrema. Our secolid optiniizatioii attempt staited with 

a different initial geometry of the horncone and a much higher value of the compression ratio 

R, = 40.203 is obtained when So = 0.020833, S, = 5.5232 and S, = 0.22747. For this 

compression ratio, the resonator is oscillated at the acceleration amplitude 2 = 6.58 17 x 1 0-4 and 

the frequency SZ = 1.4259 . Comparing with the compression ratio for the horncone in 

Lawrenson et al.' (shown in Fig. 8(a)), the second optimal horncone (shown in Fig. 8(b)) 

improves the compression ratio by more than 196% at the same value of input power. For 

horncone shapes, the principle that higher compression ratio is obtained with smaller narrow end 

is valid, as in the case of conical shapes. Comparing the dimensions of the two homcones, the 

optimal horncone is smaller and the cone section is relatively longer than that of the horncone 

used in Lawrenson et ul.'. In Fig. 8(c), the pressure waveform at the narrow end is presented for 

the two horncones. The waveform for the new horncone design is more complicated exhibiting 

two notable peaks per cycle. One pressure peak is significantly higher than the other. The two 

pressure waves corresponding to the two horn-cones also have different phases. Under the 
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prescribed conditions, the peak of the pressure is about 4.7 times the ambient pressure in the 

optimal horncone while the peak is about 3.2 times for the horncone in Lawrenson e? u1.I. 

E. Optimal cosine shape 

The cosine shape is defined as 

R(X)=So+S,(l-cos(S,X)), for O I X  51 

Assuming the input power is entirely determined by the interior gas pressure, Chun and Kim’ 

compared three individual resonators of the same volume: one conical shape, one %-cosine shape 

( S, = n ) and one %-cosine shape ( S, = 377 / 2 ). They found that the %-cosine resonator 

produces the highest compression ratio among the three resonators. Starting with the %-cosine 

dimensions reported in Chun and Kim’, So = 0.025, S, = 0.095, S, = E ,  all three shape parameters 

are optimized using our criteria. The resulting optimal cosine shape parameters are given by 

So = 0.020833, S, = 0.073545 and S, = 3.2603, and the resonator shape is shown in Fig. 9(b). 

For the optimal shape, we obtain the compression ratio R, = 13.693 at the frequency 

R = 1.4830, which is about 20% better than that of Chun and Kim’ at the same level of input 

power. Using different initial guesses of shape parameters for cosine resonators, the 

optimization scheme produced results that yielded lower compression ratios, 

Under the specified conditions (the same power input <W1>, the ratio of specific heats y 

and the viscosity-related parameter G), the horn-cone shape is found to be better than the cosine 

shape in generating higher compression ratio at the narrow end, opposite the findings of Chun 
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and Kim’. As shown in Fig. 9(c), the pressure waveform of the optimal cosine design is similar 

to that of Chun and Kim’ with a greater pressure peak and a different phase. 

V. CONCLUSIONS 

A local optimization scheme is presented for finding the resonator shapes that maximize 

the pressure compression ratio at one end of an oscillating acoustic resonator. The optimal 

dimensions are reported for cone, horncone, and cosine shaped resonators. The results are 

summarized in Table I, including the shape parameters, corresponding acceleration amplitude, 

resonance frequency, and compression ratio. 

For each type of resonator, a smaller narrow end is found to give a larger pressure peak- 

to-peak ratio. This finding suggests that the number of shape parameters in an optimization can 

be reduced by setting the dimension of the narrow end fixed at a value as small as possible. For 

the types of horncone and cosine shapes, there are many different designs that achieve local 

extrema. Using different initial guesses for the optimal design, the results show that as much as 

196% improvement on the compression ratio can be achieved with a fixed level of input power. 

For the shapes considered herein, the horncone shape is found to generate the highest 

compression ratio. The acoustic field in a resonator is a continuous function of the resonator 

shape, the ratio of specific heats and the viscosities. Consequently, the dimensions of optimal 

resonator shape reported herein will undergo small changes if ratio of specific heats and/or the 

viscosities change by a small amount. Searching strategies for globally optimal shapes are under 

investigation. 
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S" s, s2 2 (x1~-4)  R R c  

Cone: 

Ilinskii, et al. 0.032941 0.268 N/A 5.0 1.3 134 5.0475 

Optimal 0.020833 0.15438 NIA 6.6859 1.3123 6.7213 

Horn-cone: 

Lawrenson, et al. 0.028333 5.7264 0.25 5.0613 1.4674 13.564 

Optimal 0.020833 5.5232 0.22747 6.58 17 1.4259 40.203 

Cosine-shape: 

Chun and Kim 0.025 0.095 3.1416 5.6299 1.4837 1 1.440 

Optimal 0.020833 0.073545 3.2603 5.0613 1.4830 13.693 

- 

Table I. Summary of the optimization. The shape parameters of the resonators in previous studies and the 

optimized resonators and their compression ratios are listed. The corresponding acceleration levels and 

oscillating frequencies that achieve the compression ratios are also shown. 
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Figure Captions 

Figure 1. The reduced pressure p / p o  at the ends of a horncone and a cylinder at their 

corresponding resonance frequencies for the same acceleration 2 = 1 x 1 OT3 

Figure 2. The ratio between the amplitudes of the second and the first harmonics of the pressure 

wave, p 2  / p 1  , is plotted as a hnction of the dimensionless amplitude of the first harmonic 

reduced pressure p ,  / p o  . These amplitudes are calculated for the narrow end of the horncone 

and at cne end ~f the cylinder. 

Figure 3. The effect of the frequency and the amplitude of acceleration on the dimensionless 

amplitude of the first harmonic reduced pressure p ,  / p o  . The pressure is calculated for the 

narrow end of the horncone for the acceleration 2 = 2 x 1 O4 (crosses) and 2 = 1 x 1 0-3 (circles and 

squares). 

Figure 4. Experimental apparatus. 

Figure 5 .  The dimensionless acceleration signals measured at the two ends of the horncone 

resonator by PCB accelerometers. 

Figure 6. The dynamic pressure frequency response measured at the narrow end of the horn-cone 

resonator and the pressure responses predicted by the numerical model computed for varying 
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values of G with a dimensionless acceleration level, 

measured at the resonator narrow end. 

= 1.03 x 1 0-4, matching the acceleration 

Figure 7. Conical shapes: (a) the reference conical resonator; (b) the optimized conical 

resonator. For the same input power, the compression ratios corresponding to the shapes in (a) 

and (b) reach the values of 5.0475 and 6.7204 respectively. For shape parameters, see the text. 

Figure 8. (a) The horncone shape in Lawrenson et al. (b) Optimized horncone shape. For shape 

parameters, see the text. (c) The pressure waveform at the narrow end for the horncone in 

Lawrenson et al. (the solid line) and that for the second optimized horncone (the dashed line) 

are shown. 

Figure 9. (a) The %-cosine shape as in Chun and Kim'. (b) The optimized %-cosine shape. (c) 

The pressure waveform at the narrow end for the '/-cosine resonator in Chun and Kim' (the solid 

line) and that for the optimized '/-cosine shape (the dashed line) are shown. 
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